LEITFADEN

DER LASTFALL ERDBEBEN IM ANLAGENBAU

Entwurf, Bemessung und Konstruktion von Tragwerken und Komponenten in der chemischen Industrie in Anlehnung an die DIN EN 1998-1

Oktober 2012

Verantwortliches Handeln
Der VCI unterstützt die weltweite Responsible-Care-Initiative
Der vorliegende Leitfaden und die dazu gehörigen Erläuterungen wurden erarbeitet durch

Dr. C. Butenweg Lehrstuhl für Baustatik und Baudynamik, RWTH Aachen
Dr. H.-J. Dargel Bayer Technology Services GmbH
T. Höchst Verband der Chemischen Industrie e.V.
Dr. B. Holtschoppen Lehrstuhl für Baustatik und Baudynamik, RWTH Aachen
R. Schwarz Infraserv GmbH & Co. Höchst KG
M. Sippel BASF SE

Ansprechpartner:

Verband der Chemischen Industrie e.V.
Mainzer Landstraße 55, 60329 Frankfurt, Internet: http://www.vci.de
Thilo Höchst, Tel.: +49 69 2556-1507, Fax: +49 69 2556-2507, E-Mail: hoechst@vci.de

Übersicht über die wesentlichen Änderungen zum Leitfaden 2009

2) Dadurch bedingte redaktionelle Änderungen.
3) Teilweise Neuordnung von Absätzen

Wesentliche inhaltliche Änderungen:

1) Abschnitt 4.c: Neu: Konstruktive Hinweise zu Ausfachungsmauerwerk
2) Abschnitte 5.1, 5.2 und 5.4: Detailliertere Ausführungen zur Erdbeben einwirkung und zu Untergrundverhältnissen
3) Tabelle 5.1: Neue Einordnung gehandhabter Stoffe bzgl. ihres Schadenspotentials
4) Abschnitt 6.1.b: Detaillierte Ausführungen und Verweise zur Modellierung von Tanks, Silos
5) Abschnitt 6.1.c: Hinweise zur Modellierung von Rohrleitungen
6) Abschnitt 6.2: Nichtlineare Berechnungsverfahren zugelassen
7) Abschnitt 7.1 bzw. 7.3: Nachweis im Schadensbegrenzungszustand möglich
8) Abschnitt 9: Besondere Regeln für verschiedene Bauweisen kürzer gefasst
9) Abschnitt 10: Erdbebenschutzsysteme kürzer gefasst
Inhalt

Einleitung ... 5

1 Anwendungsbereich ... 6

2 Normative Verweisungen ... 6

3 Begriffe ... 6

4 Entwurf und konstruktive Auslegung ... 7
 4.a Tragstrukturen von Anlagen .. 7
 4.b Freistehende Behälter, Silos, Tanks und Kolonnen .. 7
 4.c Nicht tragende Einbauten und Rohrleitungen im Tragwerk 7

5 Erdbebeneinwirkung .. 8
 5.1 Endbebenzonen ... 8
 5.2 Untergrundverhältnisse, Geologie und Baugrund ... 8
 5.3 Bedeutungsbeiwerte .. 9
 5.4 Regeldarstellung der Erdbebeneinwirkung ... 10
 5.5 Kombinationen der Einwirkung mit anderen Einwirkungen 11

6 Tragwerksberechnung .. 12
 6.1 Modellabbildung ... 12
 6.1 a Tragstrukturen von Anlagen .. 12
 6.1 b Freistehende Behälter, Silos, Tanks und Kolonnen .. 13
 6.1 c Nicht tragende Einbauten und Rohrleitungen .. 13
 6.2 Berechnungsverfahren ... 13
 6.3 Berechnung der Verformungen .. 14
 6.4 Nicht tragende Bauteile und Rohrleitungen .. 14

7 Sicherheitsnachweise ... 16
 7.1 Allgemeines ... 16
 7.2 Grenzzustand der Tragfähigkeit ... 16
 7.2 a Tragstrukturen von Anlagen .. 16
 7.2 b Freistehende Behälter, Silos, Tanks und Kolonnen .. 16
 7.2 c Nicht tragende Einbauten und Rohrleitungen .. 16
 7.3 Nachweis der Schadensbegrenzung ... 17
 7.3 a Tragstrukturen von Anlagen .. 17
 7.3 b Freistehende Behälter, Silos, Tanks, und Kolonnen .. 17
 7.3 c Nicht tragende Einbauten und Rohrleitungen .. 17

8 Besondere Regeln .. 18

9 Erdbebenschutzsysteme .. 18

10 Beurteilung bestehender Anlagen ... 18
 10.1 Zustandserfassung .. 19
 10.2 Ertüchtigung .. 20

11 Literaturangaben .. 20
Einleitung

Der Leitfaden ist in erster Linie für die Errichtung neuer Anlagen gedacht. Es werden aber auch wirtschaftliche und sicherheitstechnisch sinnvolle Empfehlungen im Umgang mit bestehenden Anlagen gegeben. Dabei ist zu beachten, dass das Immissionsschutzrecht nicht generell die Anpassung von bestehenden Anlagen an den aktuellen Stand der Technik verlangt. Die Verhältnismäßigkeit von Ertüchtigungsmaßnahmen muss im Einzelfall, d.h. für jede Einzelanlage und für jede einzelne Anforderung, beurteilt werden.

1 Anwendungsbereich

(1) Dieser Leitfaden gilt in Kombination mit der DIN EN 1998-1 für den erdbebenge-
rechten Entwurf, die Bemessung und die Konstruktion von Anlagen (Neuanlagen)
der Chemischen Industrie oder verwandter Industrien. Für Bauteile und Konstruktio-
onen, deren seismisches Verhalten von dem üblicher Hochbauten abweicht,
bezieht sich der Leitfaden auf die jeweils relevanten Teile der Normenreihe
DIN EN 1998.

(2) Der Leitfaden enthält darüber hinaus Vorgehensweisen für die Beurteilung und
Vorschläge zur Verbesserung der Erdbebensicherheit von bestehenden Anlagen.

(3) Der Leitfaden berücksichtigt die baulichen Tragstrukturen der Anlagen, freistehen-
de Behälter, Silos, Tanks, Kolonnen, sowie bauliche Einbauten, nicht tragende
(vernachlässigte) technische Komponenten und Rohrleitungen in den Anlagen.

(4) DIN EN 1998-1 stellt gemäß Absatz 3.2.1 (5) keine Anforderungen an Bauwerke in
Gebieten sehr geringer Seismizität (Erdbebenzone 0). Aus Vorsorgegründen wird
für diese Bauwerke die Anwendung des Abschnitts 4 dieses Leitfadens (Entwurf
und konstruktive Auslegung) empfohlen.

2 Normative Verweisungen

(1) Zusätzlich zu den Normverweisen in DIN EN 1998-1 Abschnitt 1.2 sind für die An-
wendung dieses Leitfadens folgende Dokumente erforderlich (es gilt jeweils die
letzte Ausgabe des in Bezug genommenen Dokuments einschließlich aller Ände-
rungen):

- Liste der Technischen Baubestimmungen der Bundesländer
- Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreini-
gungen, Geräusche, Erschütterungen und ähnliche Vorgänge (BlmSchG)
- Zwölftes Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes
 (Störfall-Verordnung – 12. BlmSchV)
- Normenreihen DIN EN 199x mit ihren nationalen Anhängen, sofern vorhanden.

3 Begriffe

(1) Es gelten die Definitionen der DIN EN 1998-1 Abschnitt 1.5. Darüber hinaus wird
festgelegt:

Anlagen im Sinne dieses Leitfadens sind Gebäude, Gebäudeteile, Traggerüste mit
ihren verfahrenstechnischen Komponenten, Einbauten und Rohrleitungen, sowie
Behälter, Silos, Tanks und Kolonnen.
4 Entwurf und konstruktive Auslegung

4.a Tragstrukturen von Anlagen

(1) Die Regelungen der DIN EN 1998-1 Abschnitt 2.2.4 (Besondere Maßnahmen) sind zu beachten.

(2) Die Regelungen der DIN EN 1998-1 Abschnitte 4.2.1 bis 4.2.3 (Eigenschaften erdbebensicherer Hochbauten) sind zu beachten.

(3) Aussteifungssysteme sollten so angeordnet und über Deckenscheiben verbunden werden, dass ein direkter horizontaler Lastabtrag gewährleistet und Torsionsschwingungen vermieden werden. Einzelne nebeneinander angeordnete bauliche Anlagen müssen über eigene Aussteifungssysteme und ausreichende Fugenabstände verfügen.

4.b Freistehende Behälter, Silos, Tanks und Kolonnen

(2) Aufgeständerte Behälter, Tanks und Silos sind gegen Umstürzen und Gleiten durch Wahl geeigneter Maßnahmen (z.B. Aussteifungssysteme und Verankerungen) zu sichern.

(3) Grundsätzlich sind Verankerungen und Verbindungsmittel nicht-dissipativ auszulegen (siehe 7.2.b (4)).

(4) Leitungsanschlussbereiche an Behältern, Silos, Tanks und Kolonnen müssen eine ausreichende Verformungsfähigkeit aufweisen.

4.c Nicht tragende Einbauten und Rohrleitungen im Tragwerk

(1) Die Unterkonstruktionen von Einbauten (Apparate, Behälter, Rohrleitungen, Fassadenteile, u. ä.) sind auf die horizontale Beanspruchung infolge Erdbeben auszulegen. Durch erdbebengerechte konstruktive Auslegung und Bemessung sind folgende Effekte auszuschließen:

- Umstürzen (Kippen),
- Herabfallen,
- Verrutschen mit Schadensfolge,
- Abreißen von Leitungen,
- Aufschaukeln hängender Komponenten und gegenseitiges Anstoßen.
(2) Soweit verfahrenstechnisch möglich, sind schwere Einbauten in geringer Höhe und mittig oder symmetrisch im Tragwerk anzuordnen.

(5) Bei Leitungsanschlüssen an Behälter und andere technische Komponenten ist eine ausreichende Verformungsfähigkeit vorzusehen.

(6) Grundsätzlich sind Verankerungen und Verbindungsmittel nicht-dissipativ auszulegen (siehe 7.2.c (2)).

(7) Bei der konstruktiven Auslegung von Ausfachungsmauerwerk sind die Regelungen der DIN EN 1998-1 Abschnitt 4.3.6 zu beachten.

5 Erdbebeneinwirkung

5.1 Erdbebenezonen

(1) Eine schematische Darstellung der Erdbebenezonen in der Bundesrepublik Deutschland, sowie die Zuordnung von Intensitätsintervallen und Referenz-Spitzenwerten der Bodenbeschleunigung zu den Erdbebenezonen sind in DIN EN 1998-1/NA angegeben.

5.2 Untergrundverhältnisse, Geologie und Baugrund

(1) Es gelten die Regelungen der DIN EN 1998-1 Abschnitt 3.1 (Baugrundbeschaffenheit) und die zugehörigen Regelungen des DIN EN 1998-1/NA.

5.3 Bedeutungsbeiwerte

(1) Aus der Kombination von Schadenspotential und möglicher Auswirkung für den Personenschutz, den Umweltschutz und für Lifeline Einrichtungen ergibt sich das Schadensrisiko der Anlage oder Komponente, auf Grundlage dessen der Anlage drei Bedeutungsbeiwerte nach den Tabellen 5.1 bis 5.3 zugeordnet werden. Der ungünstigste dieser Bedeutungsbeiwerte ist für die Bemessung maßgebend.

(2) Die Zuweisung eines Bedeutungsbeiwertes kleiner als 1,0 ist für Anlagen der Chemischen Industrie oder verwandter Industrien ausgeschlossen.

(3) Abgrenzbare Gebäude und abgrenzbare Einrichtungen, die sich im Erdbebenfall unabhängig voneinander verformen können (ausreichende Fugenbreite), dürfen getrennt voneinander nachgewiesen werden. Den Gebäuden und Einrichtungen können dabei unterschiedliche Bedeutungsbeiwerte zugeordnet werden.

Tabelle 5.1: Bedeutungsbeiwerte γ_i bzgl. des Personenschutzes

<table>
<thead>
<tr>
<th>Schadenspotential</th>
<th>Auswirkungen</th>
<th>In Anlagen</th>
<th>unmittelbare Umgebung (Block innerhalb Werk)</th>
<th>innerhalb Werk (eingezäunt)</th>
<th>außerhalb Werk</th>
<th>Großräumig außerhalb Werk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht flüchtige giftige Stoffe:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-Sätze** 301, 311, 331, 340, 350, 360, 370 und Dampfdruck < 0,1 hPa</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>Entzündliche und oxidierende Stoffe:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-Sätze 221, 223, 226, 261, 271, 272</td>
<td>1,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Nicht flüchtige sehr giftige Stoffe:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-Sätze 300, 310, 330 und Dampfdruck < 0,1 hPa</td>
<td>1,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Leicht- und hochentzündliche Stoffe:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-Sätze 220, 222, 224, 225, 242, 250, 260</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
<td>1,4</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>Oxidierende Gase:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-Satz 270</td>
<td>1,2</td>
<td>1,3</td>
<td>1,4</td>
<td>1,5</td>
<td>1,6</td>
<td></td>
</tr>
</tbody>
</table>

* Flüchtige und leichtfl. giftige Stoffe: H-Sätze 301, 311, 331, 340, 350, 360 und Dampfdruck ≥ 0,1 hPa

Explosive Stoffe:
H-Sätze 200, 201, 202, 203, 205, 240, 241

Hochentzündliche, verflüssigte Gase:
H-Satz 220 (verflüssigt)

Leichtflüchtige sehr giftige Stoffe:
H-Sätze 300, 310, 330 und Dampfdruck ≥ 100 hPa
Bei den entzündlichen, leichtentzündlichen, hochentzündlichen und oxidierenden Stoffen werden ausschließlich Gase und Flüssigkeiten berücksichtigt. Als Maß für die Flüchtigkeit der giftigen bis sehr giftigen Stoffe dient der Dampfdruck bei 20°C.

Tabelle 5.2: Bedeutungsbeiwerte \(\gamma_f \) bzgl. des Umweltschutzes

<table>
<thead>
<tr>
<th>Auswirkungen</th>
<th>Keine Konsequenzen für die Umwelt außerhalb des Werkes</th>
<th>Geringe Konsequenzen für die Umwelt außerhalb des Werkes</th>
<th>Großräumige Konsequenzen für die Umwelt außerhalb des Werkes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einfluss auf die Umwelt</td>
<td>1,0</td>
<td>1,2</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Tabelle 5.3: Bedeutungsbeiwerte \(\gamma_f \) für Lifeline Einrichtungen

<table>
<thead>
<tr>
<th>Anforderungen</th>
<th>Normale Anforderungen an die Verfügbarkeit</th>
<th>Hohe Anforderungen an die Verfügbarkeit</th>
<th>Sehr hohe Anforderungen an die Verfügbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rückhaltesysteme, Verkehrswege, Rettungswege</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>Lifeline Bauwerke (Feuerwachen, Löschanlagen, Rettungsdienststationen, Energieversorgung, Rohrbrücken)</td>
<td>1,3</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Notstromversorgung*, Sicherheitssysteme*</td>
<td>1,4</td>
<td>1,5</td>
<td>1,6</td>
</tr>
</tbody>
</table>

*Systeme, die notwendig sind, um betriebliche Prozesse in den sicheren Zustand zu überführen.

5.4 Regeldarstellung der Erdbebeneinwirkung

(1) Es gelten die Regelungen der DIN EN 1998-1 Abschnitt 3.2.2.1 (Allgemeines zur grundlegenden Darstellung der Erdbebeneinwirkung).

(2) Form und Parameter der elastischen Bodenbeschleunigungs-Antwortspektren für die horizontale und die vertikale Erdbebeneinwirkung sind DIN EN 1998-1/NA, NDP zu 3.2.2.2 zu entnehmen.

(3) Das horizontale Bemessungsspektrum für lineare Berechnung ist DIN EN 1998-1/NA, NDP zu 3.2.2.5 zu entnehmen. Die Kontrollperiode \(T_B \) sollte dabei mit \(T_B = 0,01s \) angesetzt werden.

(4) Ist eine Berücksichtigung der Vertikalkomponente der Erdbebeneinwirkung erforderlich (vgl. Abschnitt 6.2 (4) dieses Leitfadens), sollen zur Beschreibung des Bemessungsspektrums die Gleichungen des horizontalen Bemessungsspektrums verwendet werden, wobei der Referenz-Spitzenwert der Bodenbeschleunigung \(a_{gR} \) durch \(a_{gR} = 0,5 \cdot a_{gR} \) und der Untergrundparameter \(S \) durch \(S = 1,0 \) ersetzt wird.
(5) Abweichend von DIN EN 1998-1 Abschnitt 3.2.3 wird die Darstellung der Erdbeneinwirkung mit Hilfe von Zeitverläufen der Bodenbeschleunigung und verwandter Größen nicht empfohlen.

5.5 Kombinationen der Einwirkung mit anderen Einwirkungen

(1) Die Kombinationsbeiwerte $\psi_{2,i}$ zur Kombination veränderlicher Einwirkungen in der Bemessungssituation Erdbeben gemäß DIN EN 1990 Abschnitt 6.4.3.4 sind in Tabelle 5.4 des Leitfadens angegeben. Die Kombinationsbeiwerte sind an die in Tabelle NA.1.1 der DIN EN 1990/NA angegebenen Werte angelehnt und berücksichtigen die spezifischen Gegebenheiten im Anlagenbau.

(2) Abweichend von den Regelungen der DIN EN 1998-1 (Tabelle 4.2 bzw. DIN EN 1998-1/NA Tabelle NA.5) ist der Beiwert zur Berechnung der Kombinationsbeiwerte $\psi_{E,i}$ grundsätzlich mit $\phi = 1,0$ anzusetzen.

(3) Die Einwirkungen aus Erdbeben A_{Ed} sind für die maßgebenden Betriebslastkonsellationen zu ermitteln. Diese sind im jeweiligen Einzelfall unter Berücksichtigung der Betriebsabläufe zu definieren.

(4) Zwangsbeanspruchungen sind als veränderliche Betriebslasten zu berücksichtigen, wenn sie in der Bemessungssituation Erdbeben ungünstig wirken.

Tabelle 5.4: Kombinationsbeiwerte $\psi_{2,i}$ in Anlehnung an DIN EN 1990/NA, Tabelle NA.1.1

<table>
<thead>
<tr>
<th>Einwirkung</th>
<th>Kombinationsbeiwert ψ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrslasten</td>
<td></td>
</tr>
<tr>
<td>Lagerflächen</td>
<td>0,8</td>
</tr>
<tr>
<td>Betriebsflächen</td>
<td>0,15</td>
</tr>
<tr>
<td>Büroflächen</td>
<td>0,3</td>
</tr>
<tr>
<td>Anhängelasten</td>
<td>0,8</td>
</tr>
<tr>
<td>veränderliche Maschinenlasten, Fahrzeuglasten</td>
<td>0,5</td>
</tr>
<tr>
<td>Brems- und Anfahrlasten</td>
<td>0</td>
</tr>
<tr>
<td>Montagelasten, andere kurzzeitig oder selten auftretende Lasten</td>
<td>0</td>
</tr>
<tr>
<td>Betriebslasten</td>
<td></td>
</tr>
<tr>
<td>Veränderliche Betriebslasten</td>
<td>0,6*</td>
</tr>
<tr>
<td>Betriebsdrücke</td>
<td>1,0</td>
</tr>
<tr>
<td>Betriebstemperatur</td>
<td>1,0</td>
</tr>
<tr>
<td>Windlasten</td>
<td></td>
</tr>
<tr>
<td>Temperatureinwirkungen von außen (temporär)</td>
<td>0</td>
</tr>
<tr>
<td>Schneelasten</td>
<td>0,5</td>
</tr>
<tr>
<td>Wahrscheinliche Setzungsdifferenzen des Baugrundes</td>
<td>1,0</td>
</tr>
</tbody>
</table>

* Ständig vorhandene Betriebslasten sind als ständige Last G_k anzusetzen.
6 Tragwerksberechnung

6.1 Modellabbildung

6.1 a Tragstrukturen von Anlagen

(1) Es wird empfohlen, soweit möglich für die Tragstrukturen von Anlagen die zulässigen Vereinfachungen nach DIN EN 1998-1 Abschnitt 4.3.1 auszunutzen. Bei der Verwendung von ebenen Modellen sind die räumlichen Effekte aus Torsion zu berücksichtigen.

(3) Als Referenzwert für die Strukturdämpfung soll bei Verwendung des elastischen Antwortspektrums 5% viskose Bauwerksdämpfung angesetzt werden. Bei Verwendung des Bemessungsspektrums sind davon abweichende Dämpfungswerte bereits durch den bauartspezifischen Verhaltensbeiwert q erfasst.

(4) Bei Anlagen, die mit Erdbebenschutzsystemen zur Energiedissipation nach Abschnitt 9 des Leitfadens ausgestattet sind, sind die entstehenden Nichtlinearitäten in den Tragwerksmodellen zu berücksichtigen.

6.1.b Freistehende Behälter, Silos, Tanks und Kolonnen

(1) Das Berechnungsmodell muss die Steifigkeits- und Massenverteilung sowie die Dämpfungs- bzw. Energiedissipationseigenschaften realistisch abbilden.

(2) Der Einfluss des Baugrundes ist in der Berechnung zu berücksichtigen, wenn die daraus resultierenden Effekte das Schwingungsverhalten der Anlage nennenswert beeinflussen. Hierfür können vereinfachend Einzelfedern mit dynamischen Federkennwerten verwendet werden (siehe Erläuterungen).

(4) Bei granularem Lagergut darf für die Ermittlung der Beanspruchungen der Stützkonstruktion vereinfachend die Masse des Lagerguts als starr mit der Siloschale verbunden angenommen werden.

(5) Angaben zur Dämpfung gelagerter Flüssigkeiten und Schüttgüter sind DIN EN 1998-4 Abschnitt 2.3.3.2 zu entnehmen.

(6) Im Grenzzustand der Tragfähigkeit sollte der Verhaltensbeiwert q nicht größer als 1,5 gewählt werden.

(7) Für die Modellabbildung sehr schlanker vertikaler Anlagenteile wie Kolonnen und Schornsteine gelten die Regelungen der DIN EN 1998-6 Abschnitt 4.2.

6.1.c Nicht tragende Einbauten und Rohrleitungen

(2) Für die Modellabbildung oberirdischer Rohrleitungen gelten die Regelungen der DIN EN 1998-4 Abschnitt 5.4.1.

(3) Für die Berechnung eingeerdeter Rohrleitungen ist die Modellierung der seismischen Wellen wesentlich. Hierbei ist DIN EN 1998-4 Abschnitt 6.3 zu beachten.

6.2 Berechnungsverfahren

(2) Entsprechend DIN EN 1998-1 Abschnitt 4.3.3.4.2 darf die Bemessung auf Grundlage von nichtlinearen statischen Verfahren erfolgen. Eine Bemessung auf Grundlage von Zeitverlaufsrechnungen wird nicht empfohlen.
(3) Die Horizontalkomponenten der Erdbebeneinwirkung sind als gleichzeitig wirkend anzusetzen. Die Kombination der resultierenden Beanspruchungen erfolgt entsprechend DIN EN 1998-1, Absatz 4.3.3.5.1.

(4) Die Vertikalkomponente der Erdbebeneinwirkung kann bei der Berechnung des Tragwerks im Regelfall vernachlässigt werden. Zu berücksichtigen sind die vertikalen Beschleunigungen jedoch, unabhängig von der Größe der vertikalen Beschleunigung, bei der Bemessung von Tragwerksteilen der in DIN EN 1998-1, Absatz 4.3.3.5.2 (1) genannten Gruppen, sowie bei Trägern, die große anlagentechnische Massen tragen. Für diese Bauteile sind die horizontale und die vertikale Erdbebeneinwirkung als gleichzeitig wirkend anzusetzen.

(5) Für die Berechnung von Gründungen ist DIN EN 1998-5 Abschnitt 7.3 (Berechnungsverfahren) zu beachten.

(6) Bei der Berechnung von Silos ist DIN EN 1998-4 Abschnitt 3.3 zu beachten.

(7) Bei der Berechnung von Tankbauwerken ist DIN EN 1998-4 Abschnitt 4.3 (Berechnungsverfahren) zu beachten.

(8) Bei der Berechnung von oberirdischen Rohrleitungen mit einer horizontalen Ausdehnung größer 600m ist die räumliche Veränderlichkeit der Bodenbewegung entsprechend DIN EN 1998-4 Abschnitte 5.4.2 (5)-(6) zu berücksichtigen.

(9) Bei der Berechnung von eingeerdeten Rohrleitungen ist DIN EN 1998-4 Abschnitt 6.4 zu beachten.

6.3 Berechnung der Verformungen

(1) Es gelten die Regelungen der DIN EN 1998-1 Abschnitt 4.3.4.

(2) Sind die im Grenzzustand der Tragfähigkeit berechneten Verformungen für den Betriebszustand unverträglich, sollte der Nachweis der Schadensbegrenzung nach Abschnitt 7.3 geführt werden.

6.4 Nicht tragende Bauteile und Rohrleitungen

(1) Zur Bemessung nicht tragender Bauteile und ihrer Verankerungen und Unterkonstruktionen kann vereinfachend die maximal zu erwartende horizontale Erdbebenerkraft \(F_a \) gemäß Gleichung (1) bestimmt und in der maßgebenden horizontalen Richtung im Massenschwerpunkt des Bauteils angesetzt werden.

\[
F_a = 1,6 \cdot S_{e,max} \cdot \gamma_a \cdot m_a \quad [kN]
\]

mit: \(S_{e,max} \) = Plateauwert des elastischen Antwortspektrums \([\text{m/s}^2]\), ermittelt mit dem Bauwerks-Bedeutungsfaktor \(\gamma_f = 1,0 \)

\[
S_{e,max} = 2,5 \cdot S \cdot \eta \cdot a_{gr} \cdot 1,0
\]

\(S \) = Untergrundparameter

\(\eta \) = Dämpfungs-Korrekturbeiwert zur Berücks. der Strukturdämpfung
des Tragwerks; \(\eta = \sqrt{10/(5 + \xi)} \geq 0,55; \) für \(\xi = 5\% \) ist \(\eta = 1,0 \)

\[\xi \quad = \quad \text{Wert der viskosen Dämpfung des Tragwerks [%];} \]

\[\text{in der Regel = 5\% (vgl. Leitfaden Absatz 6.1 a (3))} \]

\[\gamma_a \quad = \quad \text{Bedeutungsfaktor des Bauteils / der Komponente nach Abschnitt 5.3 [-]} \]

\[m_a \quad = \quad \text{Masse des Bauteils / der Komponente [t]} \]

Alternativ kann die Horizontalkraft \(F_a \) unter Berücksichtigung der Einbauhöhe über Grund sowie dem Schwingverhalten der Tragstruktur gemäß Gleichung (6.5) der Erläuterungen ermittelt werden.

(2) Die Horizontalkraft \(F_a \) ist in Kombination mit den ständigen Lasten und den ungünstig wirkenden horizontalen und vertikalen Betriebslasten anzusetzen.

(3) Bei über mehrere Tragwerksebenen verlaufenden Bauteilen (z.B. Kolonnen) kann die Bemessungskraft \(F_a \) gemäß der Massebelegung des Bauteils auf die einzelnen horizontal führenden Lagerpunkte verteilt werden.

(4) Für die Einbauten selbst ist \(F_a \) entsprechend der Masse- und Steifigkeitsverteilung auf das statische Ersatzsystem der Einbauten zu verteilen. \(F_a \) ist auch hier zusammen mit allen ständigen Lasten und den ungünstig wirkenden Betriebslasten anzusetzen.

(7) Können aus Relativverschiebungen Beanspruchungen der Einbauten entstehen (z.B. bei Rohrleitungen zwischen zwei Gebäuden), sind diese Relativverschiebungen bei der Bemessung der Einbauten zu berücksichtigen.
7 Sicherheitsnachweise

7.1 Allgemeines

(1) Es gilt die Regelung der DIN EN 1998-1 Abschnitt 4.4.1.

(3) Als Kombinationsbeiwerte $\psi_{2,i}$ zur Kombination der veränderlichen Einwirkungen sind in der seismischen Lastfallkombination die Werte nach Tabelle 5.4 anzusetzen.

7.2 Grenzzustand der Tragfähigkeit

(1) Die Referenz-Überschreitungswahrscheinlichkeit ($\gamma = 1.0$) für den Grenzzustand der Tragfähigkeit beträgt 10% in 50 Jahren, dies entspricht einer Referenz-Wiederkehrperiode von 475 Jahren.

7.2.a Tragstrukturen von Anlagen

(1) Für die baulichen Tragstrukturen der Anlagen ist der Nachweis im Grenzzustand der Tragfähigkeit nach DIN EN 1998-1 Abschnitt 4.4.2 zu führen.

7.2.b Freistehende Behälter, Silos, Tanks und Kolonnen

(1) Für Silos ist der Nachweis im Grenzzustand der Tragfähigkeit nach DIN EN 1998-4 Abschnitt 3.5.2 zu führen.

(2) Für Behälter und Tanks ist der Nachweis im Grenzzustand der Tragfähigkeit nach DIN EN 1998-4 Abschnitt 4.5.2 zu führen.

(4) Für den Tragfähigkeitssnachweis von Verbindungsmitteln und Verankerungen sind die Beanspruchungen mit dem Verhaltensbeiwert $q = 1.0$ zu ermitteln, und damit ein linear-elastisches Verhalten der Verankerungen sicherzustellen.

7.2.c Nicht tragende Einbauten und Rohrleitungen

(1) Nicht tragende Einbauten sowie deren Verankerungen und Unterkonstruktionen sind für die in Abschnitt 6.4 dieses Leitfadens angegebenen Bemessungskräfte nachzuweisen.

(2) Beim Tragfähigkeitsnachweis nicht tragender Einbauten muss sichergestellt werden, dass sich Verbindungsmittel und Verankerungen linear-elastisch verhalten (siehe Erläuterungen).
(3) Für den Nachweis oberirdischer Rohrleitungen im Grenzzustand der Tragfähigkeit gelten die Regelungen nach DIN EN 1998-4 Abschnitte 5.2.2 und 5.6.

7.3 **Nachweis der Schadensbegrenzung**

(1) Der Nachweis der Schadensbegrenzung kann z.B. zur Gewährleistung der Betriebssicherheit geführt werden, wenn dies vom Betreiber der Anlage gewünscht ist.

(2) Die Referenz-Überschreitungswahrscheinlichkeit \(\gamma_f = 1,0 \) für den Nachweis der Schadensbegrenzung ist vom Betreiber festzulegen. Der empfohlene Wert ist 10% in 10 Jahren, dies entspricht einer Referenz-Wiederkehrperiode von 95 Jahren.

(3) Der Nachweis der Schadensbegrenzung ist linear elastisch zu führen. Das elastische Antwortspektrum muss die Bauwerksdämpfung in angemessener Weise berücksichtigen. Der in DIN EN 1998-1 Abschnitt 4.4.3.2(2) eingeführte Abminderungsfaktor \(n \) ist im Geltungsbereich des Leitfadens nicht anzuwenden.

7.3.a **Tragstrukturen von Anlagen**

(1) Für die baulichen Tragstrukturen der Anlagen ist der Nachweis der Schadensbegrenzung nach DIN EN 1998-1 Abschnitt 4.4.3 zu führen.

7.3.b **Freistehende Behälter, Silos, Tanks, und Kolonnen**

(1) Für Silos ist der Nachweis der Schadensbegrenzung nach DIN EN 1998-4 Abschnitt 3.5.1 zu führen.

(2) Für Behälter und Tanks ist der Nachweis der Schadensbegrenzung nach DIN EN 1998-4 Abschnitte 4.1.2 und 4.5.1 zu führen.

(3) Für schlankere freistehende Anlagen wie Kolonnen und Schornsteine ist der Nachweis der Schadensbegrenzung nach DIN EN 1998-6 Abschnitt 4.9 zu führen.

7.3.c **Nicht tragende Einbauten und Rohrleitungen**

(1) Nicht tragende Einbauten sowie deren Verankerungen und Unterkonstruktionen sind für die horizontale Ersatzkraft \(F_a \) nach Abschnitt 6.4 dieses Leitfadens nachzuweisen. Wird die Ersatzkraft \(F_a \) mittels Gleichung 6.5 der Erläuterungen berechnet, ist der Verhaltensbeiwert der Komponente \(q_a = 1,0 \) zu setzen (vgl. Abschnitt 7.3(3)).

(2) Für den Nachweis der Schadensbegrenzung bei oberirdischen Rohrleitungen gelten die Regelungen nach DIN EN 1998-4 Abschnitt 5.2.1.

(3) Für den Nachweis der Schadensbegrenzung bei eingeerdeten Rohrleitungen gelten die Regelungen nach DIN EN 1998-4 Absätze 6.5, insbesondere Absatz (4)P.
8 **Besondere Regeln**

(1) Für Betonbauten gelten die Regelungen der DIN EN 1998-1 Abschnitt 5.

(2) Für Stahlbauten gelten die Regelungen der DIN EN 1998-1 Abschnitt 6.

(3) Für Verbundbauten aus Stahl und Beton gelten die Regelungen der DIN EN 1998-1 Abschnitt 7.

(4) Für Holzbauten gelten die Regelungen der DIN EN 1998-1 Abschnitt 8.

9 **Erdbebenschutzsysteme**

(1) Die folgenden Unterabschnitte umfassen in erster Linie grundlegende Prinzipien und methodische Angaben.

(3) Die Konzepte ausreichender Festigkeit und Steifigkeit sowie die dissipative Auslegung der zu bemessenden Struktur sind durch die Regelungen in DIN EN 1998-1 abgedeckt.

(4) Die auf die Struktur einwirkende Schwingungsenergie kann durch den Einsatz passiver oder aktiver Feder-/Dämpfersysteme vermindert werden.

10 **Beurteilung bestehender Anlagen**

(1) Die vorhandene Erdbebensicherheit von Anlagen hängt neben der korrekten erdbebengerechten Bemessung auch immer von der fehlerfreien Errichtung und dem aktuellen Anlagenzustand ab.

(3) Bestehende Anlagen, die Betriebsbereich oder Teil eines Betriebsbereichs (gemäß BImSchG §3 Abs. 5a) mit erweiterten Pflichten sind, sind bei baulichen Veränderungen oder Nutzungsänderungen sowie darüber hinaus im Rahmen der regelmäßigen Überprüfung des Sicherheitsberichtes nach 12. BImSchV auch auf
die Auswirkung von Erdbeben zu beurteilen. Zeigen sich dabei Defizite hinsichtlich der Erdbebensicherheit, ist die Anlage in angemessener Weise zu ertüchtigen (Abschnitt 10.2).

(4) Bei Erreichen oder Überschreiten der in Anhang I Spalte 5 der 12. BImSchV (erweiterte Pflichten) genannten Mengenschwellen im Betriebsbereich sind die Auslegung, Errichtung, Betrieb und Wartung sicherheitsrelevanter Anlagenteile zu dokumentieren.

10.1 Zustandserfassung

(1) Basis der Zustandserfassung einer Anlagenkonstruktion bezüglich ihrer seismischen Widerstandsfähigkeit sind

- Bauwerksakten und Bestandsstatik,
- Zeichnungen und Stücklisten der Anlagenkomponenten,
- einschlägige Normen und Richtlinien, auch aus damaliger Bauzeit,
- Vor-Ort-Untersuchungen des Bauwerks und der Anlagenkomponenten.

Die Zuverlässigkeit der Zustandserfassung steigt mit der Vollständigkeit der zugrunde gelegten Informationen.

(2) Folgende Informationen sind der Beurteilung des Bauwerks zugrunde zu legen:

- Horizontales Aussteifungssystem im Hinblick auf die erdbebengerechten Entwurfskriterien,
- Art der Gründung,
- Vorliegende Bodenverhältnisse,
- Abmessungen des Bauwerks, Querschnittswerte der tragenden Bauteile sowie mechanische Eigenschaften
- Zustand der verwendeten Materialien (Korrosion, Werkstofffehler),
- Qualität der konstruktiven Durchbildung,
- Regelwerke, die der ursprünglichen Konstruktion des Bauwerks zugrunde lagen,
- Gegenwärtige oder geplante Nutzung des Bauwerks im Hinblick auf die Bedeutungskategorie,
- Betriebslasten, Füllzustände, Betriebstemperaturen, etc.
- Art und Ausmaß vorangegangener und vorhandener Schäden; ggf. auch Art und Ausmaß vorangegangener Sanierungsmaßnahmen.

(3) Ziel der Zustandserfassung und der darauf folgenden Evaluierung ist die Lokalisierung stark gefährdeter Anlagenebereiche und die Identifizierung der größten

(4) Ergibt die Evaluierung, dass deutliche oder gravierende Mängel vorliegen, sind rechnerische Untersuchungen durchzuführen und das Bauwerk bzw. die Komponente ggf. zu ertüchtigen.

10.2 Ertüchtigung

(1) Eventueller Handlungsbedarf zur Reduzierung der Gefährdung von Menschen und Umwelt ist unter Berücksichtigung der Verhältnismäßigkeit zu ermitteln.

(2) Bauliche Maßnahmen stehen im Vordergrund der Ertüchtigung. Sie haben das Ziel, die Standsicherheit der Anlage auf ein angemessenes Niveau zu erhöhen.

(3) Für das ertüchtigte Bauwerk ist der Nachweis der Standsicherheit nach Abschnitt 7.2 dieses Leitfadens zu erbringen. Der Nachweis der Schadensbegrenzung nach Abschnitt 7.3 dieses Leitfadens kann durchgeführt werden, wenn dies vom Betreiber der Anlage gewünscht ist.

(4) Bei den rechnerischen Nachweisen sind Unsicherheiten bei der Bestimmung des Ist-Zustands zu berücksichtigen, indem die Eigenschaften auf der Widerstandsseite durch Division durch einen Konfidenzbeiwert nach DIN EN 1998-3, Absatz 3.3.1(4) bzw. Absatz 3.5 (1) abgemindert werden.

(6) Im Hinblick auf eine wirtschaftliche Lösung kann das Risiko für Personen und Umwelt auch durch betriebliche Maßnahmen reduziert werden, so dass sich die Notwendigkeit und der Umfang der baulichen Maßnahmen verändert.

11 Literaturangaben

Die relevante Literatur wird in den Erläuterungen des Leitfadens angegeben.